Estimating sampling error of evolutionary statistics based on genetic covariance matrices using maximum likelihood.
نویسندگان
چکیده
We explore the estimation of uncertainty in evolutionary parameters using a recently devised approach for resampling entire additive genetic variance-covariance matrices (G). Large-sample theory shows that maximum-likelihood estimates (including restricted maximum likelihood, REML) asymptotically have a multivariate normal distribution, with covariance matrix derived from the inverse of the information matrix, and mean equal to the estimated G. This suggests that sampling estimates of G from this distribution can be used to assess the variability of estimates of G, and of functions of G. We refer to this as the REML-MVN method. This has been implemented in the mixed-model program WOMBAT. Estimates of sampling variances from REML-MVN were compared to those from the parametric bootstrap and from a Bayesian Markov chain Monte Carlo (MCMC) approach (implemented in the R package MCMCglmm). We apply each approach to evolvability statistics previously estimated for a large, 20-dimensional data set for Drosophila wings. REML-MVN and MCMC sampling variances are close to those estimated with the parametric bootstrap. Both slightly underestimate the error in the best-estimated aspects of the G matrix. REML analysis supports the previous conclusion that the G matrix for this population is full rank. REML-MVN is computationally very efficient, making it an attractive alternative to both data resampling and MCMC approaches to assessing confidence in parameters of evolutionary interest.
منابع مشابه
Covariance Tapering for Likelihood Based Estimation in Large Spatial Datasets
Maximum likelihood is an attractive method of estimating covariance parameters in spatial models based on Gaussian processes. However, calculating the likelihood can be computationally infeasible for large datasets, requiring O(n3) calculations for a dataset with n observations. This article proposes the method of covariance tapering to approximate the likelihood in this setting. In this approa...
متن کاملAccounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.
The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdisp...
متن کاملEstimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کاملEstimating Genetic Parameters of Body Weight Traits in Kourdi Sheep
For estimating genetic parameters for body weight traits in Kourdi sheep data were collected from 1996 to 2013 in Kourdi Breeding Station in Northern Khorasan province of Iran. Studied traits were birth weight (BW), weaning weight (WW), six-month weight (6MW), nine-month weight (9MW) and yearling weight (YW). The fixed effects in the model were lambing year, sex, type of birth and age of dam. (...
متن کاملAsymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes
Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of evolutionary biology
دوره 28 8 شماره
صفحات -
تاریخ انتشار 2015